a2 United States Patent

O’Riordan

US009245088B1

US 9,245,088 B1
Jan. 26, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(1)

(52)

(58)

SYSTEM AND METHOD FOR DATA MINING
SAFE OPERATING AREA VIOLATIONS

Applicant: Cadence Design Systems, Inc., San

Jose, CA (US)

Inventor: Donald J. O’Riordan, Sunnyvale, CA
(US)

Assignee: Cadence Design Systems, Inc., San
Jose, CA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 14/500,735

Filed: Sep. 29, 2014

Int. Cl.

GO6F 17/50 (2006.01)

U.S. CL

CPC ... GOG6F 17/5081 (2013.01); GO6F 17/5022

(2013.01); GOGF 17/5036 (2013.01)
Field of Classification Search
CPC GOGF 17/5081; GOGF 17/5022; GOGF
17/5036
See application file for complete search history.

START

'

(56) References Cited
U.S. PATENT DOCUMENTS

6,591,402 B1* 7/2003 Chandraetal. 716/106
6,735,765 B1* 5/2004 Schumacher 717/164

7,039,645 B1* 5/2006 Neal et al.
7,574,652 B2* 8/2009 Lennonetal. 715/248
8,145,458 B1* 3/2012 Kukaletal.cccocouennne 703/4
8,543,379 B1* 9/2013 Michelsenccccceceenne 704/9
8,676,720 B1* 3/2014 Nealetal. 705/343
9,032,347 B1* 5/2015 O’Riordan 716/107
2003/0104470 Al* 6/2003 Forsetal. 435/7.1
2005/0149893 Al* 7/2005 Roesneretal. 716/4

* cited by examiner

Primary Examiner — Naum B Levin
(74) Attorney, Agent, or Firm — Kenyon & Kenyon LLP

(57) ABSTRACT

A system and method for managing SOA assertion violations
and related simulator output. Embodiments transform simu-
lator output into descriptive data regarding SOA violations
for relational database storage and processing. The database
executes queries on the descriptive data according to user
input specifying particular descriptive data and SOA asser-
tion violations of interest, and outputs query results for fur-
ther user action. Individual and accumulative SOA violations
are more easily explored by users, through a search language
that facilitates selection rule specification via pre-existing or
user-defined filters. Filters may inherit rules and combine
them with logical and comparative operators, enabling easy
construction of complex selection expressions to provide
more intuitive design guidance.

20 Claims, 8 Drawing Sheets

609

s

RECEIVE SIMULATION INPU

TS

!

OUTPUT RESULTS

PERFORM SIMULATION AND

A

INTO DESCRIPTIVE DATA

TRANSFORM SIMULATOR OUTPUT

\

EXECUTE QUERIES ON
DESCRIPTIVE DATA

/ 608

'

GENERATE AND OUTPUT
QUERY RESULTS

/‘ 610

i — 616

US 9,245,088 B1

Sheet 1 of 8

Jan. 26, 2016

U.S. Patent

tE1S g4 DoeB OB ool 0% 0% i 0% 9 i

REUS T
N

HB

001 | K

US 9,245,088 B1

Sheet 2 of 8

Jan. 26, 2016

U.S. Patent

ulisap sbeyoa yby o) pasn
1 Beyy Bugsladn ajeg 1o uBd

TR

Fil

14174

.................. 058, G
M
Ko

2aly USPPIGIo]

907 — T T T T T T T T T T T T T

002 ¢ O

US 9,245,088 B1

Sheet 3 of 8

Jan. 26, 2016

U.S. Patent

81¢

Suun
aseqgele(

(44>

sayi4 42314

91t

aseqgeieq .W.mceﬁﬂmm

SEHIRTAN
asegeie(
paInnNg

_/

0Te

aseqe

jaayspesids

1eQ

Aieuig

80¢

/

00¢

A

sosynduy

J

70g

loje|nwis

s3j14

cem\

US 9,245,088 B1

Sheet 4 of 8

Jan. 26, 2016

U.S. Patent

s34 493

Buiuiiy
sseqeleq

}esyspesidsg

Tt

9I¢ \

asegele(jeUOCIIR|SY

00y

vie

a3

suoday pmay

sos yndil

70¢

01e

Jolejnwis s8jid

[epaiA/Nad
o - ...u.au....f
Sv\

[

U.S. Patent Jan. 26, 2016 Sheet 5 of 8 US 9,245,088 B1

FIG. 5 / 0

<?xml version="1.8" encoding="UTF-8" standalone="yes"?>
<filters>

<filter> name=""MOV" synopsis="MOV in message’

help="When applied using the database mining script (described later), the "MOV" filter will
filter the violations to only those that contain the term "MOV" as a substring within the
Message field of the violation'>Message contains "MOV"</filter>

<filter name="MOV_MOS_XYZ" synopsis="MOV violations for MOS_XYZ devices "
help="A filter that matches MOV somewhere.”>Message contains "MOV" and Message contains
"MOS_XYZ"</filter>

<filter name="AMR" synopsis="AMR in name”
help="A filter that matches AMR somewhere in the short message.">Message contains "AMR"</filter>

<filter name="AMR_CBA" extends="AMR" synopsis="AMR for CBA* devices”
help="A filter that matches AMR somewhere in the short message and CBA somewhere in the device
model.">Message contains "CBA"</filter>

<filter name="AMR_MOS" synopsis="AMR for *MOS* devices”
help="A filter that matches AMR somewhere in the short message and *MOS* somewhere in the device
model.“>Message contains "AMR" and Message contains "MOS"</filter>

<filter name="MOV_MOS™ synopsis="MOV for *MOS* devices™
help="A filter that matches MOV somewhere in the short message and *MOS* somewhere in the device
model.”>Message contains “MOV" and Message contains "MOS“</filter>

<filter name="accumcomplex” synopsis="A filter with multiple clauses”

help="Checks for long accumulated durations/percentages and specific instance or assertion
names">(Instance matches "top*I32" and CumulativePercentageDuration > 99) or (AssertInst
contains "soa2" and CumulativeDuration > 4e-88)</filter>

</filters>

U.S. Patent Jan. 26, 2016 Sheet 6 of 8 US 9,245,088 B1

FIG. 6 o0
S

CSTART

RECEIVE SIMULATION INPUTS

!

604
PERFORM SIMULATION AND /
OUTPUT RESULTS

'

606
TRANSFORM SIMULATOR OUTPUT /-
INTO DESCRIPTIVE DATA

!

608
EXECUTE QUERIES ON /
DESCRIPTIVE DATA

!

610
GENERATE AND OUTPUT -
QUERY RESULTS

616

U.S. Patent

FIG. 7

700

.

711

712

713

714

Jan. 26, 2016

USER

| INTERFACE

710
/

Sheet 7 of 8

CONNECTION

730

US 9,245,088 B1

PROCESSOR

{

COMPUTER
READABLE
MEDIUM

1O DEVICES

STORAGE SYSTEM

-

T21A
SPICLE
SOURCE
FILES
721B 721C
VERILOG USER

SOURCE SETTINGS
FILES

720
/‘

US 9,245,088 B1

Sheet 8 of 8

Jan. 26, 2016

U.S. Patent

ASAOIN OL
THEVOHATN OL * WO¥-dD OL dAd OL
_ A A
718 018
\ \ VIVd
| ADVAHAINI ADVAIALNI ADVIIAINI| 808 VIO 0dd
NVIOL SIMOMLAN LOdNI AJOWAN \
TVNYALXA SWWVIHO0Ud
»A + + NOLLVOI'TddV
078 SS9 IWALSAS IWALSAS
\ 908 K « « « ONLLVHALO
ADVAAALNI
ADVAAALNI VY
JAINIYd - TVIAHINIAd] OFAIA
LNd1n0 add SOIg
JOLINOIW - \ - \ Wod
L L AMOWAN
- 08

918 k

008

8 "OIA

US 9,245,088 B1

1

SYSTEM AND METHOD FOR DATA MINING
SAFE OPERATING AREA VIOLATIONS

FIELD OF THE INVENTION

This description relates to the field of circuit simulation,
and more specifically to management of safe operating area
assertion violations and related simulation output.

BACKGROUND

Verification is an important step in the process of designing
and creating an electronic product. Verification helps ensure
that the electronic design will work for its intended purpose,
and is usually performed at several stages of the electronic
design process. Circuit designers and verification engineers
use different methods and analysis tools to verify circuit
designs, including simulation. Simulation verifies a design by
monitoring computed behaviors of the design with respect to
test stimuli. A variety of commercially offered software pro-
grams are available for circuit simulation.

Circuit performance measurements may be undertaken by
a simulator or a post-simulation engine that evaluates stored
simulated circuit waveforms. Simulator output is often saved
in binary and text form for such analysis. Circuit operations
may be verified during simulation by evaluating assertions,
which are statements that are intended to always be true
during correct circuit behavior. Assertions are commonly
used to monitor the simulated operating conditions of indi-
vidual semiconductor devices or other circuit components.
Violations of such assertions may for example indicate that
the monitored device has been exposed to conditions during
simulation that exceed its maximum safe ratings.

Analysis of so-called “safe operating area” (SOA) asser-
tions is therefore a required step in a circuit design flow. To
validate the circuit design, designers must verify that devices
do not encounter dangerous operating conditions that may
result in reliability issues and product failures. As technolo-
gies advance, more numerous and complex SOA checks have
been implemented, often as assertions, so that simulating
even arelatively small circuit block may produce hundreds of
assertion violations.

However, not all of these SOA violations are related to a
really dangerous situation. Some assertions may just trigger
routine warning messages, while others may denote more
serious risk to the circuit depending on the cumulative dura-
tion of the violations. For example, many devices may safely
sustain a relatively high voltage for a very short time, but not
for longer times.

Designers must therefore expend considerable effort to
investigate all of the assertion violations to locate and act on
the more serious ones. This requirement leads to several
negative consequences, including increased design time, and
an increased chance of error. Some errors may result in an
overdesign scenario (if a “false alarm” is mistaken for a real
issue), while others may result in a product failure (ifa serious
violation is ignored). The circuit design community therefore
needs a tool that enables designers to filter assertion violation
messages, to easily determine which assertion violations are
really dangerous.

Accordingly, the inventors have developed a novel way to
help circuit designers manage SOA assertion violations and
related simulation output.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of the SOA of a bipolar power transis-
tor, according to an embodiment.

10

15

20

25

30

35

40

45

55

60

65

2

FIG. 2 is a diagram of the SOA of a MOSFET, according to
an embodiment.

FIG. 3 is a diagram of a SOA assertion violation manage-
ment system, according to an embodiment.

FIG. 4 is a diagram of a single-script SOA assertion viola-
tion management system, according to an embodiment.

FIG. 5 is a filter file definition listing, according to an
embodiment.

FIG. 6 is a flowchart of a SOA assertion violation manage-
ment method, according to an embodiment.

FIG. 7 is a block diagram of a circuit analysis system,
according to an embodiment.

FIG. 8 is a diagram of a computer system, according to an
embodiment.

DETAILED DESCRIPTION

This description presents an easy to use system, method,
and computer program product for managing SOA assertion
violations. Embodiments may transform simulator output
into descriptive data in a form that may be stored in and
processed by a database. The database may then execute
queries on the descriptive data regarding SOA assertion vio-
lations. User input via command line arguments or GUI-
based instructions may specify the particular descriptive data
and/or assertion violations of interest. Embodiments may
then generate query results and output them, for example in a
text report and/or a spreadsheet-compatible report for further
action by a circuit designer.

Simulation programs typically output numerical simula-
tion results that may be stored in a binary file, and SOA
assertion violation messages that may be stored in a text file.
In one embodiment, the simulator itself may transform its
regular output into a database-compatible form. In one mode,
individual assertion violations may be explored directly, and
in another mode assertion violations that accumulate over
time and may thus be more serious may also be explored.

Embodiments provide a search language for specifying
rules for selecting particular SOA assertion violations from
the descriptive data in the database, for example by choosing
a pre-existing filter and/or by defining a new filter. Filters may
inherit rules from other filters and combine them with logical
and comparative operators, enabling easy construction of
complex selection expressions. Filters may therefore be tai-
lored to provide the most useful information to a circuit
designer, such as a particular level in a design hierarchy where
the selected SOA assertion violations occurred. Filters may
also specify cumulative assertion violation durations, cumu-
lative assertion violation time percentages, voltage margins,
current margins, power margins, text in a model, or text in a
message.

FIG. 1 is a diagram of the SOA 100 of a bipolar power
transistor, according to an embodiment. For semiconductor
devices and other electronic components, the SOA may be
defined as the voltage and current conditions over which a
device may be expected to operate without suffering damage.
The SOA specification may combine the various limitations
of the device into one boundary curve, allowing simplified
design of protection circuitry. Device limitations may include
for example maximum voltage, current, power dissipation,
junction temperature, and second breakdown related
extremes.

The SOA is usually presented in transistor datasheets as a
graph summarizing the safe “envelope”. For bipolar transis-
tors for example, it is common to present a graph such as that
shown in FIG. 1, with V - (collector-emitter voltage) on the

US 9,245,088 B1

3

abscissa and [(collector-emitter current) on the ordinate,
and the SOA referring to the region under the curve.

In addition to the continuous ratings, separate SOA con-
straints and/or curves may be provided for short duration
pulse conditions (e.g., one millisecond pulses, ten millisec-
ond pulses, etc.). The SOA curve thus serves as a graphical
representation of the power handling capability of the device
under various conditions.

Where both current and voltage are plotted on logarithmic
scales, the borders of the SOA are generally straight lines:
1~ ¢ppa—current limit 102
Vem=V cemac—Voltage limit 104
1.#V z=P,,...—dissipation limit 106, beyond which thermal
runaway may occur
1-*V g*=constant—this is the limit 108 resulting from the
so-called second breakdown phenomenon, a failure mecha-
nism in bipolar junction transistors

Transistors also require some time to turn off, dueto effects
such as minority carrier storage time and capacitance. They
may be damaged while turning off, depending on how the
connected load responds. The reverse bias safe operating area
(RBSOA) is the SOA during the brief time before the device
turns off. For some transistors, as long as the applied voltages
and currents stay within the RBSOA during the entire turnoff
time, the transistor may remain undamaged. The RBSOA
may be specified for a variety of turn-off conditions, and may
involve more complex constraints for some device types.

SOA specifications have traditionally been most useful for
high-power circuits such as amplifiers and power supplies, as
they allow for quick assessment of the limits of device per-
formance, the design of appropriate protection circuitry, or
selection of a more capable device. However, as modern
integrated circuitry relies increasingly on smaller and more
exotic devices with more limited and complicated power,
voltage, and current constraints, SOA management is becom-
ing increasingly relevant.

FIG. 2 is a diagram of the SOA 200 of a MOSFET, accord-
ing to an embodiment. The normal operating area 202 is
denoted as SOA one in this diagram, but brief excursions
from this area may be acceptable. For example, the MOSFET
may operate within shaded operating area two 204 for rela-
tively short periods, but it can never be allowed to operate
within the forbidden area 206 shown here in black.

Power MOSFETs do not exhibit secondary breakdown,
and their SOA is usually limited only by maximum current
(the capacity of the bonding wires), maximum power dissi-
pation, and maximum voltage. However, power MOSFETs
have parasitic PN and BJT elements within their structure,
which may cause more complex localized failure modes
resembling secondary breakdown. Device designers must
consider all of the relevant physical behaviors when specify-
ing their SOAs.

Integrated circuit manufacturers are increasingly provid-
ing process design kits (PDKs) including a library of SOA
assertions to circuit designers. These PDKs provide not only
the device models needed by designers for simulation, but
also checks or assertions to help verify the devices are not
dangerously overdriven in a simulated design. The increasing
need for adherence to standards such as the ISO 26262 Auto-
motive Safety Standard is partly driving this effort.

One example maximum operating voltage (MOV) asser-
tion violation from a PDK file is as follows:
soa__1 assert sub=MOS_ABC expr=(v(g)-v(s))
+min=-1.66 max=1.66 duration=225 ps
+message="MOS_ABC-MOV violation”
+level=warning

10

15

20

25

30

35

40

45

50

55

60

65

4

This message denotes that a specified maximum gate-
source operating voltage range of (-1.66, 1.66) was exceeded
for a MOSFET of type MOS_ABC for at least 225 picosec-
onds.

Current fabrication process PDKs may have over a dozen
unique assertions for a single transistor device, for checking
the various SOA constituent elements or constraints. Further,
as circuit size and complexity increases, the assertion viola-
tions that may be produced during a circuit simulation may
number in the hundreds of thousands. Not all of these viola-
tions should be considered as serious or fatal errors however,
and indeed many may be ignored or waived under certain
conditions.

However, the sheer number of violations produced makes it
extremely difficult to distinguish the real issues from the
spurious issues. Customers who use PDKs produced by a
manufacturer may face these difficulties for a number of
different designs. In the existing art, assertion violations
encountered during circuit simulation are typically reported
in a distributed manner, with textual error information routed
to the simulator’s logfile and numerical/timing information
routed to the simulator’s binary database. This arrangement
complicates the designer’s job of making sense of the various
SOA violations.

FIG. 3 is a diagram of a SOA assertion violation manage-
ment system 300, according to an embodiment. In the
embodiment shown in FIG. 3, a pair of scripts may be pro-
vided for converting an exemplary commercially available
simulator’s SOA assertion violation outputs into descriptive
data more amenable to further processing for eventual
designer review. A first script may transform the simulator
output stored in the two primary sources (the simulator’s
binary-format output and the simulator’s textual format out-
put) into descriptive data for a single structured (e.g., rela-
tional) database. A second script may efficiently control the
process of querying or “data mining” the descriptive data in
the database, including filtering and sorting the violations
according to user input. In one embodiment, the scripts are
written in the Python language, but that implementation is
merely exemplary and not limiting.

An input file 302 may represent a circuit design to be
simulated, which may contain a netlist derived from a circuit
schematic and/or layout for example. PDK/model files 304
describe the characteristics of individual devices that may be
incorporated into a circuit design. Simulator 306 may com-
prise a SPICE-type commercial simulator for performing
analog or mixed-signal circuit simulations, though such an
implementation is exemplary and not limiting.

The simulator’s binary-output database 308 may store
simulation results including the numerical aspects of each
assertion violation, such as the excessive voltage a particular
device is experiencing as in the example SOA assertion pre-
viously described. The simulator’s logfile 310 may store text-
based error messages describing the various violations.
Tables for the descriptive data may be created by the first
script (structured database writer 312) in the relational data-
base 314, with schema that may be queried with a supporttool
(not shown).

The relational database tables may be carefully normalized
to keep the database size small. In one example, the size of the
final relational database was found to be four times smaller
than that of the binary format simulator database alone, even
with the addition of the detailed error messages from the
simulator logfile included (these error messages were not
originally in the binary format database). The second, data-
base mining script 316 may read a number of filter files 318,
and allows additional command line arguments to be speci-

US 9,245,088 B1

5

fied to provide additional filtering and sorting capabilities. In
other embodiments, GUI-based user input may also be sup-
ported.

The database mining script 316 may also be configured to
filter out database rows, that is, remove rows (assertion vio-
lations) that are not considered “interesting” to a designer.
Any number of named filters from any number of named filter
files may be applied, and custom filter expressions may also
be applied. The filter files may be provided in a PDK or
written by users themselves. A filtering language (to be
described) allows for complex filters to be built up using
logical (AND/OR) clauses. An additional layer of filtering
may provide the ability to screen assertion violations accord-
ing to the hierarchical location of the offending device within
the design.

The database mining script 316 may dynamically construct
the appropriate SQL queries from the various command line
arguments and filter file 318 contents provided as input. The
database mining script 316 may interact with relational data-
base 314 to execute the SQL queries. The database mining
script 316 may produce text reports 320 and spreadsheet-
formatted outputs 322 as desired. For example, outputs 322
may comprise commercial spreadsheet compatible comma-
separated values (CSV) format files.

FIG. 4 is a diagram of a single-script SOA assertion viola-
tion management system 400, according to an embodiment.
Inthe FIG. 4 embodiment, the simulator 402 may be modified
to directly output descriptive data for the relational database
314 using the same database schema. In such implementa-
tion, the structural database writer 312 of the previous
embodiment is effectively moved into the previous embodi-
ment’s simulator 306. The descriptive data in the relational
database 314 may be processed by a single database mining
script 316 as previously described.

In another embodiment, a graphical user interface (GUI,
not shown) may be provided to complement the command
line, allowing designers to operate the system in a more
intuitive manner. This GUI may allow the filter files 318 to be
read and/or edited more easily, may invoke the script(s) 312/
316 as necessary, and may present the results in a table widget
(not shown). The database mining script 316 produces tabular
output, and may be configured to present all table columns or
only a subset of table columns. The output reports may be
sorted in ascending or descending order of one or more col-
umns.

FIG. 5 is a filter file definition listing 500, according to an
embodiment. The filters allow for the creation of complex
filter expressions for selecting assertion violations of interest.
In the filter expressions, UNIX glob-like pattern-matching
wildcards (such as “*” and “?””) may be supported for filtering
string-valued columns. Standard numerical Boolean opera-
tors (<7, <=, = <> “>=")may be supported for filtering
numeric fields. Filter clauses may be grouped using paren-
theses, and any number of AND/OR expressions may be
supported.

In addition, some special pattern matching operators may
be provided as part of a filter expression language for match-
ing string columns values. These may include the following:
contains—used to specify that a string contains a substring.
Example: Message contains “MOV”
startswith—used to specify that a string starts with a sub-
string. Example: Instance startswith “top.il”
endswith—used to specify that a string ends with a substring.
Example: Message endswith “AMR violation”
matches—used to specify that a string matches a UNIX glob
expression. Example: Message matches “*MOV*”

10

15

20

25

30

35

40

45

50

55

60

65

6

Users often reference previously written filters, which may
be supplied in a read-only file format by an in-house PDK
team for example, in addition to their own filters. In one
embodiment therefore, a novel scheme is provided that allows
filters to be defined such that they inherit from other filters,
including the ability for user-created filters to inherit from the
typically read-only PDK filters. In one embodiment, filter
files may be constructed using XML syntax; other syntaxes
such as that of JSON or other known languages could also be
used in other exemplary and non-limiting implementations.

The main structure of the FIG. 5 XML file is a <filters>root
element, which may internally contain one or more <filter>
elements. Each <filter> element in turn may provide up to
four attributes in this embodiment, and its textual value may
provide the actual filter expression itself. The attributes of this
implementation and their corresponding purposes are as fol-
lows:
name—a short identifier/name for the filter
synopsis—a short synopsis/summary of what the filter does
help—a longer description providing as much detail as nec-
essary for what the filter does
extends—(optional attribute) allows for filter inheritance, so
a first filter may be extended by a second filter.

Note that the textual value of the filter (that is, the value
between the <filter>and </filter>tags) may provide the actual
filter expression itself using a simple filter expression lan-
guage. The “MOV” filter (the first one in the FIG. 5 listing)
contains a short filter expression:

Message contains “MOV”

Here, the “Message” field in the expression corresponds to
an assertion definition itself, as in the soa__1 SOA assertion
example listed previously. When applied using the database
mining script, the “MOV” (maximum operating voltage) fil-
ter may therefore filter the violations to select only those
violations whose corresponding assertion definitions them-
selves contain the term “MOV” as a substring within their
Message field.

The “accumcomplex” check (near the bottom of the FIG. 5
listing) provides a more complex filtering example. When
applied, it will filter the violations to select only those where
the violating device instances match a particular expression.
In this case either the instance of the transistor device under-
going the violation must match the pattern “top*I32” and the
Cumulative Percentage Violation time for this device exceeds
99% of the total transient simulation interval, or the instanti-
ated assertion check definition itself contains the substring
“s0a2” in the definition’s own unique instance name, and the
accumulated violation time for the device (summed over all
that device’s individual violations) exceeds forty nanosec-
onds.

The “AMR_CBA” filter inherits the filter expression of the
“AMR” (absolute maximum rating) filter, in addition to pro-
viding its own filter expression: Message contains “CBA”. In
an embodiment, both filter expressions may be effectively
joined via an AND clause so the “AMR_CBA” filter may be
considered “narrower” in scope than the “AMR” filter. The
effective filter expression for the “AMR_CBA” filter is there-
fore as follows:

((Message contains “AMR”) AND (Message contains
“CBA™)).

In another embodiment, both filter expressions may be
effectively joined via an OR clause so the “AMR_CBA” filter
may be considered “broader” in scope than the “AMR” filter.
The effective filter expression for the “AMR_CBA” filter is
therefore as follows:

((Message contains “AMR”) OR (Message contains “CBA”™).

US 9,245,088 B1

7

In another embodiment, a command line switch to the
database mining script 316 may allow the user to determine
whether filter inheritance is AND-based or OR-based.

Note that the named filter referenced in the “extends”
attribute does not have to exist in the same file as the filter that
is performing the reference. This feature supports a situation
where some first set of filters may be provided by a PDK team
in a first set of filter files, which may then be further extended
(that is, narrowed or broadened in scope) by user-defined
filters defined in a second set of filter files.

Embodiments enable two major use modes for managing
SOA assertion violations. In the first use mode, assertion
violations may be inspected independently from each other,
even for the same device. In the second “accumulated” use
mode, the individual assertion violation times may be accu-
mulated over the duration of the simulation, and expressed in
table columns as both raw and accumulated values. The accu-
mulated values may also be expressed as a percentage of the
overall simulation time.

Queries and table sorts may for example show only those
violations that exceed a specified percentage of the total simu-
lation time. Circuit designers may display the accumulated
violations sorted in decreasing order of accumulated percent-
age violation time. In this way, those devices with the largest
violation time percentages (which are likely to be considered
the most egregious “offenders” in a design) may be listed first.

Options for controlling the two major use modes may be
provided via command line arguments or by graphical user
interface tools. The results may for example be presented in
tabular form, with relevant output fields and values that may
be chosen for display and reordered. For the individual vio-
lation mode, a user may specify instructions to list violations
in terms of individual violations, so that the accumulated
durations and device durations may not be listed. Alternately,
for the accumulated violation mode, a user may specify
instructions to list violations in terms of accumulated dura-
tions and device durations, so that the individual violation
details may not be listed.

The following additional non-limiting examples describe
the potential uses of the individual violation mode or the
accumulated violation mode that may be specified:

List All the Individual Violations, with no filtering applied

List Violations with Accumulated Durations (for transient
simulations)

List Available Filters (e.g., show “MOV” occurrences in
filters)

Apply Pre-written Filters (e.g., apply filters single or mul-
tiple times, with AND or OR combination control specified)

List Individual Violations, with filtering applied (e.g., show
limited number of violations)

Filter Individual Violations (e.g., select only the first n
“MOV” violations)

Sort Violations (e.g., sort by cumulative violation duration
time)

Sort Violations by Over Voltage Margin (e.g., sort by the
amount by which an expression value exceeds its upper or
lower bound)

Combined Sort and Filter, with a custom filter expression
(e.g., to specify an expression not pre-defined in any filter file,
such as violations occurring within a given time frame)

Additional Filtering based on Design Hierarchy (e.g.,
select violations from a given level in a hierarchical design)

Export a CSV File (or other commercial spreadsheet-com-
pliant file format, e.g., with a particular specified filename
and selected columns or number of devices etc.)

Further exemplary but non-limiting selection of violations
for various design purposes is also supported. For example,

10

15

20

25

30

35

40

45

50

55

60

65

8

violations where the cumulative percentage violation is
greater than a filter-specified value may be selected for out-
put. Output column widths may be specified, and a maximum
number of violating devices to be included may also be speci-
fied. The combination of filters defined via AND and OR
operations may also be specified. The number of violations
encountered to be displayed may also be specified.

FIG. 6 is a flowchart of a SOA assertion violation manage-
ment method 600, according to an embodiment. At 602, a user
may provide simulation inputs such as component models
(which may be from a PDK) and netlists for example to a
computer-executable simulator program. At 604, the simula-
tor program may perform the simulation according to the user
input, and output its results. The simulator program may
output textual results and binary-format results; the results
may comprise numerical data describing circuit behavior, and
also SOA assertion violation messages.

At 606, a first script may transform the simulator output
into descriptive data that is compatible with a database,
according to user input. In one embodiment, the simulator
program may perform the transformation itself and output
database-compatible descriptive data.

At 608, a second script may execute queries with the data-
base on the descriptive data describing the SOA assertion
violations according to user input. The user input may com-
prise command-line arguments and/or GUI-based instruc-
tions. The user input may also comprise at least one filter,
which may be defined by the user or selected from a number
of'pre-defined filters, to specify rules for selecting SOA asser-
tion violations. A filter expression language may be used to
this end.

In one embodiment, one or more filters may inherit rules
from at least one other filter. Filters may also be combined via
logical AND or alternatively logical OR comparative opera-
tors to create complex filter expressions. A filter may specify
at least one level in a design hierarchy where selected SOA
assertion violations occurred. A filter may specify text in a
model name or type, text in an assertion definition message, a
power margin, a voltage margin, a current margin, a cumula-
tive assertion violation duration, and/or a cumulative asser-
tion violation time percentage for example.

At 610, the database may generate query results for output
in a tangible form. The query results may be outputted in for
example a text report and/or a spreadsheet-compatible report
such as a CSV-format file. The query results may be sorted
and viewed as desired by a user to provide clearer intuition
regarding a circuit design being analyzed.

To summarize, embodiments organize SOA assertion vio-
lations to make them more amenable to filtering by designers,
and present novel methods for creating and using filters for
selecting violations of interest. Filters may inherit selection
rules from previously created filters, such as those typically
read-only filters supplied with a PDK. Since hundreds of
thousands of violations may be produced for realistically
sized circuits, a relational database solution is designed to
scale, allowing such large numbers of assertion violations to
be sorted and filtered extremely efficiently and rapidly (in
mere seconds). In addition, a special filtering language is
provided to facilitate the creation of complex filters.

FIG. 7 is a block diagram of an exemplary circuit analysis
system 700, according to an embodiment. This system may
provide simulator functionality for any of the methods
described above. A user may access the system 700 through a
standalone client system, client-server environment, or a net-
work environment. System 700 may comprise one or more

US 9,245,088 B1

9

clients or servers 710, one or more storage systems 720, and
a connection or connections 730 between and among these
elements.

Client 710 may execute instructions stored on transitory or
non-transitory computer readable medium 713 with proces-
sor 712, and may provide a user interface 711 to allow a user
to access storage system 720. The instructions may be part of
a software program or executable file that may operate elec-
tronic design automation (EDA) software. Client 710 may be
any computing system, such as a personal computer, work-
station, mobile computer, or other device employing a pro-
cessor which is able to execute programming instructions.
User interface 711 may be a GUI run in a user-controlled
application window on a display. A user may interact with
user interface 711 through one or more input/output (I/O)
devices 714 such as a keyboard, a mouse, or a touch screen.

Storage system 720 may take any number of forms, includ-
ing but not limited to a server with one or more storage
devices attached to it, a storage area network, or one or a
plurality of non-transitory computer readable media. Data-
bases 721 may be stored in storage system 720 such that they
may be persistent, retrieved, or edited by the user. Databases
721 may include SPICE source files 721A, Verilog source
files 721B, and a user input database 721C for example. These
databases may be kept as separate files or systems, or may be
merged together in any appropriate combination.

Only one client 710 is shown connected to storage system
720 through connection 730, which may be a simple direct
wired or wireless connection, a system bus, a network con-
nection, or the like, to provide client 710 with access to
storage system 720. In another aspect, connection 730 may
enable multiple clients 710 to connect to storage system 720.
The connection may be part of a local area network, a wide
area network, or another type of network, again providing one
or more clients with access to storage system 720. Depending
on system administrator settings, client 710’s access to sys-
tem storage 720 or to other clients may be limited.

FIG. 8 depicts an exemplary computer system comprising
the structure for implementation of the embodiments
described above. Computer system 800 comprises a central
processing unit (CPU) 802 that processes data stored in
memory 804 exchanged via system bus 806. Memory 804
typically includes read-only memory, such as a built-in oper-
ating system, and random-access memory, which may
include an operating system, application programs, and pro-
gram data. Computer system 800 also comprises an external
memory interface 808 to exchange data with a DVD or CD-
ROM for example. Further, input interface 810 may serve to
receive input from user input devices including but not lim-
ited to a keyboard and a mouse. Network interface 812 may
allow external data exchange with a local area network (LAN)
or other network, including the internet. Computer system
800 also typically comprises a video interface 814 for dis-
playing information to a user via a monitor 816. An output
peripheral interface 818 may output computational results
and other information to output devices including but not
limited to a printer 820.

Computer system 800 may comprise for example a per-
sonal computer or an engineering workstation, each of which
is widely known in the art and is commonly used for inte-
grated circuit design tasks, along with software products
commercially available for performing computer-aided inte-
grated circuit design tasks. Computer system 800 may also
comprise a mobile computer, including for example a tablet
computer or a smart phone. The computer system of FIG. 8
may for example receive program instructions, whether from
existing software products or from embodiments of the

10

15

20

25

30

35

40

45

50

55

60

65

10

present invention, via a computer program product and/or a
network link to an external site.

For purposes of explanation, specific nomenclature is set
forth to provide a thorough understanding of the present
invention. Description of specific applications and methods
are provided only as examples. Various modifications to the
embodiments will be readily apparent to those skilled in the
art and the general principles defined herein may be applied to
other embodiments and applications without departing from
the spirit and scope of the invention. Thus the present inven-
tion is not intended to be limited to the embodiments shown,
but is to be accorded the widest scope consistent with the
principles and steps disclosed herein.

As used herein, the terms “a” or “an” shall mean one or
more than one. The term “plurality” shall mean two or more
than two. The term “another” is defined as a second or more.
The terms “including” and/or “having” are open ended (e.g.,
comprising). Reference throughout this document to “one
embodiment”, “certain embodiments”, “an embodiment” or
similar term means that a particular feature, structure, or
characteristic described in connection with the embodiment
is included in at least one embodiment. Thus, the appearances
of'such phrases in various places throughout this specification
are not necessarily all referring to the same embodiment.
Furthermore, the particular features, structures, or character-
istics may be combined in any suitable manner on one or more
embodiments without limitation. The term “or” as used
herein is to be interpreted as inclusive or meaning any one or
any combination. Therefore, “A, B or C” means “any of the
following: A; B; C; A and B; A and C; Band C; A, B and C”.
An exception to this definition will occur only when a com-
bination of elements, functions, steps or acts are in some way
inherently mutually exclusive.

Inaccordance with the practices of persons skilled in the art
of computer programming, embodiments are described with
reference to operations that may be performed by a computer
system or a like electronic system. Such operations are some-
times referred to as being computer-executed. It will be
appreciated that operations that are symbolically represented
include the manipulation by a processor, such as a central
processing unit, of electrical signals representing data bits
and the maintenance of data bits at memory locations, such as
in system memory, as well as other processing of signals. The
memory locations where data bits are maintained are physical
locations that have particular electrical, magnetic, optical, or
organic properties corresponding to the data bits.

When implemented in software, the elements of the
embodiments may serve as the code segments directing a
computing device to perform the necessary tasks. The non-
transitory code segments may be stored in a processor read-
able medium or computer readable medium, which may
include any medium that may store or transfer information.
Examples of such media include an electronic circuit, a semi-
conductor memory device, a read-only memory (ROM), a
flash memory or other non-volatile memory, a floppy diskette,
aCD-ROM, an optical disk, a hard disk, a fiber optic medium,
etc. User input may include any combination of a keyboard,
mouse, touch screen, voice command input, etc. User input
may similarly be used to direct a browser application execut-
ing on a user’s computing device to one or more network
resources, such as web pages, from which computing
resources may be accessed.

While particular embodiments of the present invention
have been described, it is to be understood that various dif-
ferent modifications within the scope and spirit of the inven-
tion are possible. The invention is limited only by the scope of
the appended claims.

US 9,245,088 B1

11

What is claimed is:

1. A processor-implemented method for increasing the reli-
ability of a circuit design by managing safe operating area
assertion violations, the method comprising:

using a processor that reads and executes instructions from

a non-transitory storage medium for:

transforming simulator output into descriptive data,
regarding safe operating area assertion violations,
wherein the descriptive data is compatible with a data-
base;

executing queries with the database on the descriptive
data regarding the safe operating area assertion vio-
lations according to user input; and

generating tangible query results regarding the safe
operating area assertion violations for the circuit
design to work for its intended purpose.

2. The method of claim 1 wherein the simulator output
comprises at least one of textual output and binary output.

3. The method of claim 1 wherein the simulator output
comprises numerical simulation results and safe operating
area assertion violation messages.

4. The method of claim 1 wherein a simulator program
performs the transforming and produces the descriptive data.

5. The method of claim 1 wherein the user input comprises
at least one of command line arguments and instructions
provided via a graphical user interface.

6. The method of claim 1 wherein the user input comprises
at least one of choosing and defining at least one filter that
specifies rules for selecting particular safe operating area
assertion violations.

7. The method of claim 6 wherein at least one filter inherits
at least one rule from at least one other filter.

8. The method of claim 6 wherein the filter specifies at least
one level in a design hierarchy where the selected safe oper-
ating area assertion violations occurred.

9. The method of claim 6 wherein the filter specifies at least
one of a cumulative assertion violation duration, a cumulative
assertion violation time percentage, a voltage margin, a cur-
rent margin, a power margin, text in a model, and text in a
message.

10. The method of claim 1 wherein the query results com-
prise at least one of a text report and a spreadsheet-compatible
report.

11. A non-transitory computer readable medium storing
instructions that, when executed by a processor, perform a
method for increasing the reliability of a circuit design by
managing safe operating area assertion violations, the pro-
cessor-implemented method comprising:

5

15

20

25

30

35

40

45

12

transforming simulator output into descriptive data,
regarding safe operating area assertion violations,
wherein the descriptive data is compatible with a data-
base;

executing queries with the database on the descriptive data

regarding the safe operating area assertion violations
according to user input; and

generating tangible query results regarding the safe oper-

ating area assertion violations for the circuit design to
work for its intended purpose.

12. The medium of claim 11 wherein the simulator output
comprises at least one of textual output and binary output.

13. The medium of claim 11 wherein the simulator output
comprises numerical simulation results and safe operating
area assertion violation messages.

14. The medium of claim 11 wherein a simulator program
performs the transforming and produces the descriptive data.

15. The medium of claim 11 wherein the user input com-
prises at least one of command line arguments and instruc-
tions provided via a graphical user interface.

16. The medium of claim 11 wherein the user input com-
prises at least one of choosing and defining at least one filter
that specifies rules for selecting particular safe operating area
assertion violations.

17. The medium of claim 16 wherein at least one filter
inherits at least one rule from at least one other filter.

18. The medium of claim 16 wherein the filter specifies at
least one level in a design hierarchy where the selected safe
operating area assertion violations occurred.

19. The medium of claim 16 wherein the filter specifies at
least one of a cumulative assertion violation duration, a cumu-
lative assertion violation time percentage, a voltage margin, a
current margin, a power margin, text in a model, and textin a
message.

20. A system for increasing the reliability of a circuit
design by managing safe operating area assertion violations,
comprising:

a non-transitory storage medium for storing executable

instructions; and

a processor executing the instructions to:

transform simulator output into descriptive data, regard-
ing safe operating area assertion violations, wherein
the descriptive data is compatible with a database;

execute queries with the database on the descriptive data
regarding the safe operating area assertion violations
according to user input; and

generate tangible query results regarding the safe oper-
ating area assertion violations for the circuit design to
work for its intended purpose.

#* #* #* #* #*

